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In this report we propose a ‘toy model’ for pricing derivatives on the realized variance of an 
Asset, which we apply for pricing correlation swaps on the components of an equity index. We 
find that the fair strike of a correlation swap is approximately equal to a particular measure of 
implied correlation, and that the corresponding hedging strategy relies upon dynamic trading 
of variance dispersions. 
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Volatility and variance modeling has been an active research area within quantitative finance 
since the publication of the Black-Scholes model in 1973. Initially, research efforts have 
mostly focused on extending the Black-Scholes model for pricing calls and puts in the presence 
of implied volatility ‘smile’ (Hull-White 1987, Heston 1993, Dupire 1993a & 1993b, Derman-
Kani 1994.) In the mid 1990’s, new instruments known as variance swaps also appeared on 
equities markets and made squared volatility a tradable asset (Neuberger 1990, Demeterfi-
Derman 1999.) As variance became an asset class of its own, various forms of volatility 
derivatives have appeared, for example volatility swaps, forward contracts and options on the 
new CBOE Volatility Index (VIX.) The modeling of these new instruments is difficult because 
they overlap with certain exotic derivatives such as cliquet options which highly depend on the 
dynamics of the implied volatility surface. 

In recent years the research on volatility and variance modeling has embraced the pricing and 
hedging of these volatility derivatives. Here we must distinguish between two types: 

– Derivatives on realized volatility, where the payoff explicitly involves the historical 
volatility of the underlying Asset observed between the start and maturity dates, e.g. 
volatility swaps. 

– Derivatives on implied volatility, where the payoff will be determined at maturity by 
the implied volatility surface of the underlying asset, e.g. forward-starting variance 
swaps, cliquet options, or options on the VIX. 

It is important to notice that the first category can be seen as derivatives on a variance swap 
of same maturity. Leveraging on this observation and on earlier work by Dupire (1993b), 
Buehler (2004) models a continuous term structure of forward variance swaps, while Duanmu 
(2004), Potter (2004) and Carr-Sun (2005) model a fixed-term variance swap. All these 
approaches are based on dynamic hedging with one or several variance swap instruments. 

The second category is beyond the scope of this report. We refer the interested reader to the 
work on the dynamics of the implied volatility surface carried out by Schonbucher (1998), 
Cont-Fonseca (2002), Brace et al. (2002). 

 

Despite the development of exotic and hybrid markets which offer derivatives on several 
underlying assets, correlation modeling in the context of option pricing theory has been 
relatively under-investigated in the financial literature. 

Correlation swaps appeared in the early 2000’s as a means to hedge the parametric risk 
exposure of exotic desks to changes in correlation. Exotic derivatives indeed frequently 
involve multiple assets, and their valuation requires a correlation matrix for input. Unlike 
volatility, whose implied levels have become observable due to the development of listed 
option markets, implied correlation coefficients are unobservable, which makes the pricing of 
correlation swaps a perfect example of ‘chicken-egg problem.’ 
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In this report, we show how a correlation swap on an equity index can be viewed as a simple 
derivative on two types of tradable variance, and derive a closed-form formula for its 
arbitrage price relying upon dynamic trading of these instruments. For this purpose, we start 
by proposing a ‘toy model’ for tradable variance in Section 1 which we apply for pricing single 
volatility derivatives. In Section 2, we introduce a proxy for the payoff of correlation swaps 
that has the property of involving only tradable variance payoffs, and we extend the toy 
model for variance to derive the theoretical price of a correlation swap. 
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1. A toy model for tradable variance 

Our purpose is to introduce a simplified model which can be used to price derivatives on 
realized volatility. We depart from the traditional stochastic volatility models such as Heston 
(1993) by modeling directly the fair price of a variance swap with the same maturity as the 
derivative. Here, the underlying tradable asset is the variance swap itself which, at any point 
in time, is a linear mixture between past realized variance and future implied variance. 

This approach lacks the sophistication of other methods and does not address the issue of 
possible arbitrage with other derivatives instruments. But its simplicity allows us to find 
closed-form formulas based on a reduced number of intuitive parameters, so that everyone 
can form an opinion on the rationality of our results. 

The Model 
In this section we limit our considerations to a market with two tradable assets: variance and 
cash. We follow in part the guidelines by Duanmu (2004) to introduce a simplified, ‘toy model’ 
for the variance asset which is a straightforward modification of the Black-Scholes model for 
asset prices. We make the usual economic assumptions of constant interest rate r, absence of 
arbitrage, infinite liquidity, unlimited short-selling, absence of transaction costs, and 
continuous flow of information. We have the usual set up of a probability space (Ω, F, P) with 
Brownian filtration (Ft) and an equivalent risk-neutral pricing measure Q. 

We further assume that only the variance swap is tradable, but not the Asset itself1. Let 
vt(0, T) be the price at time t of the floating leg of a variance swap for the period [0, T] 
where T denotes the maturity or settlement date of the swap. From now on we use the 
reduced notation vt and we use the terms ‘variance’ and ‘variance swap’ interchangeably. 

We specify the dynamics of (vt) through the following diffusion equation under the risk-neutral 
measure Q: 

tttt dWv
T
tTdtrvdv −

+= ω2  

where r and ω are model parameters corresponding to the short-term interest rate and the 
volatility of volatility, and (Wt) is a standard Brownian motion under Q. 

Hence v0 is the price at inception of the variance swap which can be observed on the market 
or calculated using the replicating portfolio of puts and calls described in e.g. Demeterfi-
Derman (1999); and vT is the price of the same variance swap at maturity which coincides with 
the realized variance for the period [0, T]. 

Our toy model for variance is thus a log-normal diffusion whose volatility parameter linearly 
collapses to zero between the start date and the maturity date. Note that by Ito-Doeblin this 
is equivalent to assume that volatility follows a log-normal diffusion with a time-dependent 

volatility parameter 
T
tT −ω . 

 

Comparison with stochastic volatility models 

We now make the comparison with standard stochastic volatility models of the instantaneous 
asset variance (Xt). The usual mean-reverting model is 
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1 We make this assumption to avoid modeling the Asset price process itself, and escape the debate on model 
consistency with vanilla option prices. Clearly this is not a realistic assumption, hence the expression ‘toy model.’ 
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t
a
ttt dWXdtXdX ξθλ +−= )(  

where λ, θ, ξ, a are constant parameters. In this framework the price at time t of a variance 
swap over the period [0,T] is given by: 
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This price is independent of the volatility of volatility specification controlled by the 
parameter ξ. Since the variance swap price is an affine function of the instantaneous variance, 
the dynamics of (vt) are straightforwardly obtained: 

( ) t
a
t

tTtTr
tt dWXe

T
edtrvdv ξ

λ
λ )()( 11 −−−− −+=  

We may now use the variance swap price expression to obtain the dynamics of (vt) in terms of 
vt only. When a = 1 this simplifies to: 

( ) t
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and we can see that the volatility factor between brackets converges to zero as we approach 
maturity. 

 

In contrast to the toy model, the volatility specification of the variance swap in a stochastic 
volatility model is a power of the instantaneous variance, not the variance swap price. For 
short maturities the two models are comparable. 

 

Terminal distribution 

Using the Ito-Doeblin theorem, we can write the diffusion equation for ln v: 
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Thus, for all times 0 < t < t’ < T, we have: 
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Calculating the first integral explicitly we obtain: 
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Furthermore, the stochastic integral  has a normal distribution with zero mean 

and standard deviation 

∫ −
T

t sdWsT )(

3
)( 2/3tT −

. Thus, vT has a conditional lognormal distribution with 

mean 
3


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− t2

3
2)() 
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Application: arbitrage pricing of volatility derivatives 
As an example of an application of our toy model for variance, we derive the arbitrage price 
of a European contingent claim on realized volatility vT at maturity. We denote f(vT) the 

payoff and  the F-adapted price process of such contingent claim. ),( tt vtff =

Following the fundamental theorem of asset pricing, the price of the contingent claim equals 
the discounted conditional expectation of its payoff: 

[ ]tT
tTr

t FvfEef )()( −−=  

We now proceed to derive closed-form formulas for two contingent claims of particular 
interest: 

– A forward contract on realized volatility, whose payoff is the square root of variance: 

TT vvf =)( ; 

– A call option on realized variance struck at level K, whose payoff is: 

. ),0()( KvMaxvf TT −=

 

Forward contract on realized volatility 

Taking the square root of (1) we can write for all 0 < t < T: 
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Taking conditional expectations and discounting then yields: 
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But: 
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Substituting this result in (2), we obtain a closed-form formula for the price of the forward 
contract on volatility: 
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In particular: 
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A corollary is that the convexity adjustment c between the fair strikes of newly issued 
variance and volatility swaps can be expressed as a function of volatility of volatility: 
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Which gives the rule of thumb: 

Tevc rT 2
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This result has some resemblance with Duanmu’s who finds 

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0 4
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with a time-dependent volatility of volatility 
tT

tT
−

=−
ξω )( . However, we believe our 

result is more consistent with the intuition that the longer the maturity, the higher the 
convexity effect. Exhibit 1.1 below shows how the convexity adjustment behaves as a function 
of volatility of volatility and maturity. 

Exhibit 1.1 
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Convexity Adjustment between Variance and Volatility Swaps 
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Another point of interest is the corresponding dynamic hedging strategy for replicating 

volatility swaps using variance swaps. Following our approach, the quantity tδ  of variance to 

hold at a given point in time t would be: 
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It is worth noting that at time t = 0 this delta is equal to: 
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which is in line, modulus the convexity adjustment, with the market practice of calculating 
the notional of a newly issued variance swap according to the formula: 

StrikeSwapVariance
NotionalVegaNotionalSwapVariance

×
=
2

 

 

Call option on realized variance 

Because vT has a lognormal distribution, the closed-form formula for a call on realized 
variance struck at level K is identical to the Black-Scholes formula for a call on a zero-dividend 

paying stock with a constant volatility parameter2 
T
tT −

= ωσ
3
2

. Substitution yields: 

)()( 2
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where N is the cumulative standard normal distribution and: 
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Note that the quantity 
K
ev tTr
t

)( −

 corresponds to the ratio of implied variance to the option’s 

strike expressed in volatility points. 

Exhibits 1.2 to 1.4 below show how the arbitrage price of a 3-year call on variance struck at 
202 compares to the original Black-Scholes call formula at t = 0, 1 and 2 years. To generate 
these graphs we assumed a volatility of volatility of 20% and a 0% interest rate. Option prices 
are expressed in percentage of the strike. We can see that the call on variance is worth more 
than Black-Scholes at t = 0, and less at t = 1 and t = 2, which indicates a higher time decay or 
theta. 
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2 By ‘constant volatility parameter’ we mean that at time t the call on realized variance has the same price as a call 

on an asset S whose price follows the diffusion ττττ στ dWSdrSdS +=  where ),[ ∞∈ tτ  is the time 

dimension of the diffusion and σ does not depend on τ. 
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Exhibit 1.2 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 0 
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Exhibit 1.3 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 1 
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Exhibit 1.4 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 2 
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2. Pricing and hedging of quasi-correlation claims 

Correlation Swaps 
A correlation swap is a derivative instrument on a basket of n Stocks whose payoff is given as: 

K
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where w is a vector of arbitrary non-negative weights summing to 1, ρ a positive-definite 
matrix of pair-wise correlation coefficients, and K a scalar called strike. 

In practice the correlation coefficients are calculated using the canonical statistical formula 
on the time series of the Stocks’ daily log-returns. The first term in the formula corresponds to 
the weighted average of the correlation matrix, excluding the diagonal of 1’s. We call this 
quantity the realized average correlation between the n Stocks for the period [0, T]. 

 

Implied index correlation 

In the case of equity indices, an implied average correlation measure can be backed out from 
implied volatilities: 
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where n is the number of Stocks in the index, Indexσ  is the implied volatility of the index, σ is 

the vector of implied volatilities and w is the vector of index weights. 

This measure is justified by the well-known relationship between the variance of a portfolio 
and the covariance of its components, which is the founding block of portfolio theory 
(Markovitz 1952): 
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There are, however, some minor differences between an equity index and a portfolio of stocks. 
In a portfolio weights are fixed, whereas in an index they vary with stock prices. Additionally 

the formula above is only exact for standard returns ( P
P∆ ), not log-returns. In normal market 

conditions and over reasonable observation periods, these differences can be ignored. 

 

Implied correlation and ‘fair’ correlation 
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Intuitively, one would expect the ‘fair value’ of a correlation swap on an equity index to be 
related to the index implied correlation. However, in the absence of a replication strategy, 
the concept of ‘fair value’ is quite sloppy. This is complicated by the existence of implied 
volatility surfaces that translate into implied correlation surfaces: there is not a single 
measure of implied correlation. 
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Later on we establish the formal existence of a quasi-replication strategy for equity index 
correlation swaps relying upon dynamic trading of variance on the index and its components, 
and show that the ‘fair value’ of a correlation swap is roughly equal to a particular measure of 
implied correlation, after discounting. This dynamic replication strategy is more easily 
exposed using the rules of thumb which we introduce below. 

 

Correlation proxy 

In 2004 several papers (Bossu-Gu, Tierens-Anadu, Statman-Scheid) have investigated the 
relationship between portfolio volatility and average correlation. The conclusion which can be 
drawn is that for a sufficient number of Stocks and in normal conditions3 we have the rule of 
thumb: 
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where ρ  denotes either realized or implied average correlation, σ a vector of either realized 
or implied volatilities, and w a vector of components’ weights in the index. 

In essence, average correlation is thus the squared ratio of index volatility to the average 
volatility of its components. We push this paradigm one level further by noticing that this 
proxy measure is conceptually close to the ratio of index variance to the average variance of 
its components: 
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We call the quantity on the left-hand side the volatility-based correlation proxy and that on 
the right-hand side the variance-based proxy. In practice those two proxy measures typically 
differ by a few correlation points for the major equity indices, both for implied and historical 
data. It should also be noted that the variance-based proxy is always lower than or equal to 
the volatility-based one4. 

Our motivation for introducing the variance-based proxy should be clear: in this form, average 
index correlation becomes the ratio of two tradable types of variances: index variance and 
average components’ variance. In fact these variances are frequently traded one against the 
other in the so-called variance dispersion trades, with the objective of taking advantage of the 
gap between implied correlation and realized correlation, as illustrated in Exhibit 2.1 on the 
Dow Jones EuroStoxx 50 index. 
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4 This property is a straightforward consequence of Jensen’s inequality: ( ) 22
iiiiii ww σσ Σ≤Σ . 
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Exhibit 2.1 

1-year Implied and Realized Correlation of the DJ EuroStoxx 50 index 

 
Source: JPMorgan 

 

Quasi-correlation claims 
We call a quasi-correlation claim a variance derivative whose payoff is: 

T

T
T b

a
c =  

where aT denotes index realized variance and bT the average components’ realized variance, 
defined as follows: 

[ ]TT S
T

a ln1
=  

[ ]∑
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i
iT Sw

T
b
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ln1

 

with S denoting the price process of the index, (S1 , …, Sn) the vector of price processes of the 
components, and [.] the quadratic variation. 

 

Arbitrage Pricing 

We now extend our toy model to find the arbitrage price of a quasi-correlation claim. We 
consider a market of two tradable variance assets a and b and cash, and we make the same 
economic assumptions as in Section 1. 

We specify the following dynamics for the F-adapted price processes a and b under a risk-
neutral measure Q: 
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where r is the short-term interest rate, ω’s are volatility of volatility parameters for a and b, 
χ is the instant correlation parameter between a and b, and (Wt), (Zt) are two independent 
Brownian motions under Q. 

Denoting (ct) the price process for the quasi-correlation claim, and applying the Ito-Doeblin 
theorem on ln(a/b), we find: 
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Whence for all 0 < t < T: 
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Taking conditional expectations under Q and discounting yields: 
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Expanding the squares and simplifying terms, we obtain: 
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In particular, at time t = 0, we have: 
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Here, it is worth noting that if the volatility of volatility parameters are of the same order and 

the correlation of variances is high, we have rTe
b
a

c −≈
0

0
0 , which is nothing else but the 

discounted variance-based implied correlation proxy. 

 

Exhibits 2.2 to 2.4 below show how the fair strikes of a 1-year quasi-correlation claim compare 
to the variance-based implied correlation, for various levels of volatility of volatility and 
variance correlation parameters. We can see that when ωa and ωb are close the ratio is close 
to 1. This suggests that our result is relatively model-independent in the sense that it does not 
heavily depend on the model parameters. 
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Exhibit 2.2 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for χ = 0.5 

 ωb 
 ωa 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1.001 1.009 1.023 1.045 1.074 1.112 

10% 1 0.999 1.004 1.016 1.035 1.062 1.096 

15% 1 0.996 0.999 1.009 1.025 1.049 1.081 

20% 1 0.994 0.994 1.002 1.016 1.037 1.065 

25% 1 0.992 0.990 0.995 1.006 1.025 1.051 

30% 1 0.989 0.985 0.988 0.997 1.013 1.036 

Exhibit 2.3 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for χ = 1 

 ωb 
 ωa 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1 1.007 1.020 1.041 1.069 1.105 

10% 1 0.997 1 1.010 1.027 1.051 1.083 

15% 1 0.993 0.993 1 1.013 1.034 1.062 

20% 1 0.990 0.987 0.990 1 1.017 1.041 

25% 1 0.987 0.980 0.980 0.987 1 1.020 

30% 1 0.983 0.974 0.970 0.974 0.983 1 

Exhibit 2.4 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for χ = 0 

 ωb 
 ωa 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1.002 1.010 1.025 1.048 1.078 1.116 

10% 1 1.000 1.007 1.020 1.041 1.069 1.105 

15% 1 0.998 1.003 1.015 1.034 1.060 1.094 

20% 1 0.997 1.000 1.010 1.027 1.051 1.083 

25% 1 0.995 0.997 1.005 1.020 1.043 1.073 

30% 1 0.993 0.993 1.000 1.013 1.034 1.062 

 

Dynamic Hedging Strategy 

We now examine in further detail the hedging strategy for quasi-correlation claims. The 
hedging coefficients or deltas for the two variance assets are given as: 

t

ta
t a

c
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In practice, this means that if we are short a claim we must hold a long position in index 
variance against a short position in average components’ variance, in dynamic quantities. This 
type of spread trade is known as a variance dispersion. We must emphasize that here the 
weights between the two legs are not equal — in fact, the ratio of deltas is equal to the fair 
value of the claim: 

t
t

t
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t

b
t c

b
a

==
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δ

 

In particular, at t = 0, this ratio is equal to the variance-based implied correlation proxy, and 
the initial delta-hedge is known as a correlation-weighted variance dispersion trade5. 

Furthermore, the cost of setting up the delta-hedge is nil at all times: 
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Thus, the hedging strategy is entirely self-funded. 
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5 For a detailed analysis of dispersion trading, please refer to our 2005 report Correlation Vehicles, JPMorgan 
European Equity Derivatives Strategy, N. Granger and P. Allen. 



  

Conclusion 
E

 
P

R
I

C
I

N
G

 
O

F
 

E
Q

U
I

T
Y

 
C

O
R

R
E

L
A

T
I

O
N

 
S

W
A

P
S

 

Because standard correlation swaps have a payoff approximately equal to that of a quasi-
correlation claim minus the strike, it follows that the hedging strategy for the latter is a quasi-
replication strategy for the former in the sense that it replicates the payoff modulus the error 
of the correlation proxy. In other words, correlation swaps on an equity index should trade at 
a strike close to the variance-based implied correlation proxy. It should be pointed out that at 
the time of writing, over-the-counter transactions typically take place at a significantly lower 
strike, which may indicate the existence of dynamic arbitrage opportunities. 

The implications are vast from both practical and theoretical standpoints. On the practical 
side, the identification of a quasi-replication strategy is a crucial step for the development of 
the correlation swap market. On the theoretical side, we see at least three research areas 
which should be affected by our results: the pricing and hedging of exotic derivatives on 
multiple equity assets (in particular the long-debated issue of correlation skew), the stochastic 
modeling of volatility and correlation, and the pricing and hedging of options on realized 
correlation as a branch of the pricing theory of derivatives on realized variance. 
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