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Fundamentals of index volatility, constituent volatility, 
correlation and dispersion 

A New Approach For Modelling and Pricing Correlation Swaps 

Introduction 

This report carries forward an earlier work (2005) on the arbitrage pricing of correlation swaps on a stock index.  The 
theoretical derivations have been made more rigorous, and we also include tentative parameter estimates based on 
a break-even historical analysis.  Our aim here is to provide some elementary fundamental and practical results, 
which may serve as guiding principles and rules of thumbs for a new category of derivatives on realised volatility and 
correlation.  These ‘statistical derivatives’ have grown in popularity over the past few years, giving sophisticated 
investors the opportunity to take advantage of specific market structural imbalances. 

Correlation swaps are over-the-counter derivative instruments allowing to trade the observed correlation between 
the returns of several assets, against a pre-agreed price.  In the equity derivatives sphere, these contracts appeared 
in the early 2000’s as a means to hedge the parametric risk exposure of exotic desks to changes in correlation. 
Exotic derivatives indeed frequently involve multiple assets, and their valuation requires a correlation matrix as input 
parameter. Unlike volatility, whose implied levels have become observable due to the development of listed option 
markets, implied correlation coefficients are unobservable, which makes the pricing of correlation swaps a perfect 
example of ‘chicken-egg problem.’  We show how a correlation swap on the constituent stocks of an index can be 
viewed as a simple derivative on two types of tradable variance – the square of volatility –, and derive an analytical 
formula for its fair value relying upon dynamic trading of these instruments. 

The report is organised as follows.  Section 1 gives precise definitions of the concepts of realised and implied 
volatility of an index and its constituent stocks, realised and implied dispersion as well as realised and implied 
correlation; some key mathematical properties and practical applications are then introduced.  Section 2 proposes a 
one-factor ‘toy model’ for derivatives on realised variance which is a straightforward modification of the Black-
Scholes (1973) model; an analytical formula for the fair value of volatility (as opposed to variance) is then derived 
and used for parameter estimation.  Section 3 extends the toy model to two factors in order to derive an analytical 
formula for the fair value of realised correlation; our numerical results suggest that the fair value of a correlation 
swap should be close to implied correlation; finally, a formal link between dispersion trading and the hedging 
strategy for correlation is established. 

 

1. Fundamentals of index volatility, constituent volatility, correlation and dispersion 

1.1. Definitions 

Consider a universe of N stocks S = (Si)i=1..N, and a vector of positive real numbers w = (wi)i=1..N such that1 Σi=1..N wi = 
1.  Denote Si(t) the price of stock Si at time t, with convention S(0) = 1, and define their geometric average as: 

(110) ( )∏
=

≡
N

i

w
i

itStI
1

)()(  

From an econometric point of view, (S, w, I) is a simplified system2 for the calculation of a stock index I with 
constituent stocks S and weights w. 

We complete the quantitative setup by considering a probability space (Ω, E, P) with a P-filtration F, and assuming 
that the vector S of stock prices is an F-adapted, positive Ito process. 

                                                      
1 The positivity and unit sum conditions imply N ≥ 2. 
2 In practice, most stock indexes are defined as an arithmetic weighted average, with weights corresponding to 
market capitalisations; as such, weights change continuously with stock prices. Additionally the constituent stocks 
are typically reviewed on a quarterly or annual basis. 
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Given a time period3 τ and a positive Ito process X, define: 
(111) | | ds

τ
τ ≡ ∫  

(112) 
1 2( ) ( ln )X

sd X
τ

σ τ τ −≡ ∫  

(113) ( )2

1
( ) ( )i

N
SS

i
i

wσ τ σ τ
=

≡ ∑  

(114) ( )22

1

( ) ( )i

N
S

i
i

wε τ σ τ
=

≡ ∑  

From an econometric point of view, (111) is the length of a time period, (112) is the continuously sampled realised 
volatility of any positive Ito process X (in particular that of the constituent stock prices S, and the index value I), (113) 
is the continuously sampled average realised volatility of the constituent stocks4, and (114) corresponds to a 
realised residual quantity useful below. 

It is easy to see that ( ) ( )S Iσ τ σ τ≥ , and )()( τετσ >S . Define: 

(115) ( ) ( )2 2
( ) ( ) ( )S Id τ σ τ σ τ≡ −  

(116) 
( ) ( )
( ) ( )

2 2

2 2

( ) ( )
( ) 1

( ) ( )

I

S

σ τ ε τ
ρ τ

σ τ ε τ

−
≡ ≤

−
 

From an econometric point of view, (115) is the continuously sampled average realised dispersion5 between 
constituent stocks, and (116) is their continuously sampled average realised correlation6.  (116) is consistent with 
usual econometric and market practices (see for instance Skintzi-Refenes7, 2005), and we refer to it as canonical 
realised correlation. 

                                                      
3 Here a time period may be a segment such as [t0, t1], or a finite reunion of segments. 

4 Note that (113) corresponds to the canonical quadratic norm, whereas constituent volatility is more frequently 
defined as the weighted arithmetic average of realised stock volatilities.  Our choice is motivated by the economic 
fact that only variance has a liquid market. 

5 To see this clearly rewrite: 
2

12

1 1
( ) ln ( ) ln ( )

N N

i i k kt
i k

d w d S t w d S t
τ

τ τ −

∈
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑∫  

6 To see this clearly observe that: 

( )

,
2 2

2
2

1

( )
i j

i

S S
i jI

i j

N S i j
ii i j

w

α α ρ
σ ερ

α ασ ε

≠

= ≠

−
≤ =

−

∑
∑∑

, where iii wσα ≡  and 

1, 1( ) ( ) ( ln )( ln )i j jiS S SS
i jd S d S

τ
ρ τ τ σ σ− −≡ ∫ . 

7 Note that Skintzi-Refenes implicitly define )(τσ S  as the weighted arithmetic average of constituent volatilities. 
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We now consider a variance market on (S, w, I) where at any point in time t agents can buy and sell future realised 
variance8 σ2 over any given period τ, against payment at maturity9 of a pre-agreed price10 called implied variance11 
and denoted σ*2.  In the absence of arbitrage, this means that there exists a P-equivalent, F-adapted measure P* 
such that for X = I or X = Si: 

(117) ( )2* *( ) ( )X X
t tEσ τ σ τ⎡ ⎤= ⎢ ⎥⎣ ⎦

 

where Et
* denotes conditional expectation under P* with respect to Ft. 

Additionally, define implied constituent volatility and implied residual as: 

(118) ( ) ( )2 2* * *

1
( ) ( ) ( )i

N
SS S

t i t t
i

w Eσ τ σ τ σ τ
=

⎡ ⎤≡ = ⎢ ⎥⎣ ⎦∑  

(119) ( ) ( )
2 2* 2 * *

1

( ) ( ) ( )i

N
S

t i t t
i

w Eε τ σ τ ε τ
=

⎡ ⎤≡ = ⎣ ⎦∑  

From an economic point of view, (118) and (119) correspond to the unique no-arbitrage price of a portfolio of the N 
future realised variances of the constituent stocks, with weights w and (wi

2)i=1..N, respectively.  

No arbitrage considerations imply that )()( ** τστσ I
t

S
t ≥ , and )()( ** τετσ t

S
t > .  Define: 

(120) ( ) ( ) ( )2 2 2* * * *( ) ( ) ( ) ( )S I
t t t td E dτ σ τ σ τ τ⎡ ⎤≡ − = ⎣ ⎦  

(121) 
( ) ( )
( ) ( )

2 2* *
*

2 2* *

( ) ( )
( ) 1

( ) ( )

I
t t

t S
t t

σ τ ε τ
ρ τ

σ τ ε τ

−
≡ ≤

−
 

We refer to (120) as implied dispersion and (121) as canonical implied correlation. 

Here, we must emphasise that, while (120) corresponds to the no-arbitrage price of realised dispersion as defined in 
(115), (121) does not necessarily correspond to the fair value of realised correlation as defined in (116): in general, 

* *( ) ( ( ))t tEρ τ ρ τ≠ .  It is the aim of Section 3 to bridge the gap between implied correlation and the fair value of 
future realised correlation. 

                                                      
8 Throughout this report, variance means the square of volatility, and volatility means the square root of variance. 
9 Here maturity means sup τ. 
10 In this report, the prices or values of all derivatives are considered in their natural currency and as of maturity, i.e. 
they are forward prices or values. 
11 Note that in the absence of a variance market, the price of variance can be determined using listed option prices 
(see e.g. Derman et al., 1999). 
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1.2. Proxy formulas for realised and implied correlation 

In Appendix A, we derive proxy formulas for (116) and (121) using limit arguments.  Subject to fairly reasonable 
conditions on the weights and the pair-wise realised correlations between constituent stocks, we find that residual 
terms ( )ε τ  and *( )tε τ  vanish as N goes to infinity: 

)(ˆ
)(
)()( τρ
τσ
τστρ ≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎯⎯ →⎯ +∞→ S

I

N  

)(ˆ
)(
)(

)( *
*

*
* τρ

τσ
τσ

τρ tS
t

I
t

Nt ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎯⎯ →⎯ +∞→  

We refer to )(ˆ τρ  and )(ˆ * τρ t  as realised and implied correlations, respectively. 

In Exhibit 1.2.1, we compare three measures of the realised correlation of the Dow Jones EuroStoxx 50 index, over 
1-month and 24-month rolling periods since 2000.  We can see that the distance between the proxy and canonical 
measures does not exceed a few correlation points, and also that the distance between the proxy and average pair-
wise measures can occasionally be significant (more than 10 correlation points), particularly for 24-month rolling 
periods. 

In Exhibit 1.2.2, we introduce an alternative measure which is based on a reconstitution of index values with 
constant weights and constituent stocks at the start of each 24-month period, as well as a substitute calculation of 
realised constituent volatility.  We can see that the distance between this measure and the average pair-wise 
measure does not exceed a few correlation points. 
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Exhibit 1.2.1 — 1-month and 24-month realised correlation measures of the Dow Jones EuroStoxx 50 index 
(2000—2007) 
In the two charts below, we report on each monthly listed expiry date the correlation level realised over the following (a) month or (b) 24 months, 
using  formulas below.  On each monthly start date, we retrieved the constituent stocks and their weights, and held them constant over the 1-
month or 24-month time period.  In all cases, realised volatilities were calculated as the annualised zero-mean standard deviation of daily log-
returns, using closing levels.  For index volatility, we used  actual index closing levels as disseminated by the calculation agent. 

Proxy:

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
S

I

σ
σ

, Canonical: 
( )
( ) 22

22

εσ

εσ

−

−
S

I

, Average pair-wise: ji SS
j

ji
ij

ji
i wwww ,

1

ρ∑∑
<

−

<
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. 
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Source: Dresdner Kleinwort 
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Exhibit 1.2.2 —24-month realised correlation measures of the Dow Jones EuroStoxx 50 index (2000—2007) 
In the chart below, we compare the ‘Proxy’ and ‘Average pair-wise’ correlation measures with an alternative measure named ‘Synthetic 
Standard’, whose formula is given below.  For this measure, we calculated: (i) realised index volatility using synthetic index values following (110) 
with constant weights and constituents throughout each 24-month period; (ii) realised constituent volatility as weighted arithmetic average of the 
realised volatilities of the constituent stocks. 

Synthetic Standard: 
( )

( ) 22

1

22

εσ

εσ

−

−

∑ =
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S
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Source: Dresdner Kleinwort 

1.3. Variance dispersion trades 

One practical application of the proxy formulas is the so-called vega-neutral variance dispersion trade.  Variance 
dispersion trades are spread trades between constituent variance and index variance, i.e. given a time period τ, the 
variance dispersion payoff is of the form: 

( ) ( )2 2
( , ) ( ) ( )S ID β τ β σ τ σ τ≡ −  

where β is a positive constant called beta factor, leg ratio or spread ratio.  The no-arbitrage price to enter into this 

trade at time t is: ( ) ( )2 2* * *( , ) ( ) ( )S I
t t tD β τ β σ τ σ τ≡ − .    For ease of notation, we omit the time period τ as an 

argument in the rest of this report, except when placing particular emphasis. 

In its standard form, β = 1 and we have D(1) = d2.  It must be noted that if β < 1 we can have Dt
*(β) < 0, and/or D(β) 

< 0.  For the avoidance of doubt, the net exchange of cash flows at maturity is always determined by the differential 
amount 

0

*( ) ( )tD Dβ β− , where t0 is the trade date.  If positive the dispersion seller pays the amount to the 
dispersion buyer, if negative the dispersion buyer pays the absolute amount to the dispersion seller. 

The rationale for entering a variance dispersion trade is usually to sell or buy correlation through index variance, 
while hedging the unwanted volatility exposure through an offsetting position in constituent variance.  Such trades 
have been particularly popular with hedge funds, lured by the large historical alpha between implied and realised 
correlation, as illustrated in Exhibit 1.3.1 for the Dow Jones EuroStoxx 50 index. 
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A crucial aspect of variance dispersion trades is the determination of the beta factor which controls the amount of 
constituent variance needed to isolate the correlation contained in index variance. Possible approaches include: 

► Standard: 0

0

*

*

I
t

S
t

σ
β

σ
= .  This case corresponds to the first variance dispersion trades.  The rationale was that 

aggregate vega12 at time t0 was nil: 
( ) ( )

0 0

0 0

2 2* *
* *

* * 2 2 0
S I

t t S I
t tS I

t t
t t t t

σ σ
β βσ σ

σ σ
= =

∂ ∂
− = − =

∂ ∂
.  However, it soon 

became clear to arbitrageurs that index and constituent volatility did not vary identically, which motivated more 
sophisticated choices for beta. 

► Statistical.  In this case, beta is chosen to minimise historical deviation between the variance dispersion payoff 
and an objective function such as 

0

*
tρ ρ− .  Several practical studies of this approach can be found in broker-

dealer reports. 

► Fundamental: 0

0

0

2*
*

*
ˆ

I
t

tS
t

σ
β ρ

σ

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

.  The rationale is that we can rewrite the variance dispersion payoff as: 

( )( )
0

2*ˆ ˆ( ) S
tD β ρ ρ σ= − , and that this approach has zero cost: *( ) 0tD β = .  The combination of these two 

properties means that the net profit or loss of the variance dispersion trade is driven by the differential between 
implied and realised correlation, with realised constituent variance playing the role of a scaling factor.  The 
fundamental approach is thus perfectly suited to capture the correlation alpha. 

Dispersion trades weighted using the fundamental approach are named ‘vega-neutral’ because at time t0 
instantaneous moves in index volatility are perfectly compensated by moves in beta-weighted constituent volatility, 
provided implied correlation remains constant: 

( ) ( )
0 0

0 0

2 2* * * *
* *

* *

ˆ
ˆ2 0

S I S
t t t tS

t tS S
t t

t t t t

βσ σ ρ σ
ρ σ

σ σ
= =

∂ − ∂
= − =

∂ ∂
 

For more details on vega-neutral dispersion trades, see e.g. Bossu-Gu (2004). 

                                                      
12 Vega is the sensitivity of a derivative contract, such as a variance swap, to changes in implied volatility.  
Aggregate vega is the sum of vegas of a portfolio of derivatives. 
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Exhibit 1.3.1 — 1-month and 12-month implied versus realised correlation of the Dow Jones EuroStoxx 50 
index (2000—2007) 
In the two charts below, we report on each monthly listed expiry date the implied correlation derived from (a) 1-month or (b) 12-month at-the-
money implied volatility levels together with realised correlation over the following (a) 1 or (b) 12 months, as well as their differential (alpha). 
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Source: Dresdner Kleinwort
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2. Toy model for derivatives on realised variance 

2.1. Model framework 

In this section we introduce a toy model for the fair value of derivative claims on realised variance which is a 
straightforward modification of the Black-Scholes model (1973).  Our approach is similar to Duanmu (2004) or Friz-
Gatheral (2005) and falls in the category of fixed-maturity variance models.  More sophisticated approaches, such 
as Dupire (1992), Potter (2004), Carr-Sun (2005), or Buehler (2006) would make analytical formulas difficult or 
perhaps impossible to derive. 

Our purpose is to extend this model in Section 3 in order to derive simple analytical formulas for a derivatives claim 
on realised correlation. 

We consider a market on a single asset A where agents can buy or sell the asset’s realised variance ( )2
( )Aσ τ  over 

a fixed time period τ = [0, T].  For 0 ≤ t ≤ T, we denote vt
* the corresponding price, which is paid at maturity T; in 

particular we have ( )2* *
0 0 ( )Av σ τ= , and ( )2* ( )A

Tv σ τ= .  Generally, in the absence of arbitrage we must have for all 

t: 

( ) ( )2 2* *([0, ]) ([ , ])A A
t t

t T tv t t T
T T

σ σ−
= +  

We specify the forward-neutral dynamics of v* as follows: 
* * *2t t t

T tdv v dz
T

ω −
=  

where ω is a positive ‘volatility of volatility’ parameter, and z* is a standard Brownian motion under P*. 

Hence, v* is a geometric Brownian motion whose volatility parameter is time-dependent and linearly collapses to 
zero as maturity approaches13.  Here we differ from Duanmu’s approach, who additionally imposes a term structure 

of the volatility of volatility parameter of the form t T t
ξω =
−

, resulting in a geometric Brownian motion v’ whose 

volatility parameter decays with the square root of time: 

*2t t t
T tdv v dz
T

ξ −′ ′= . 

The advantage of Duanmu’s approach is to give a more realistic time-dependence of the volatility of volatility 
parameter, as one can intuitively expect ω to be higher in the short term than in the long term14.  The disadvantage 
is that it is an arbitrary choice, leading to a counter-intuitive result which we highlight at the end of the following 
section. 

                                                      
13 By Ito-Doeblin, the corresponding process for implied volatility v*1/2 is also a geometric Brownian motion with 

dynamics of the form: ( )1 1 1
2 2 2* * * *...t t t t

T td v v dt v dz
T

ω −
= + .  This justifies our qualification of ω as a volatility of 

volatility parameter, as opposed to volatility of variance. 
14 Our empirical results in Appendices D and E corroborate this intuitive idea. 



 

 11 

Toy model for derivatives on realised variance 

A New Approach For Modelling and Pricing Correlation Swaps 

2.2. Fair value of derivatives on realised variance.  Volatility claims. 

Within this framework, the fair value of any European derivative on realised variance vT
* with payoff *( )T Tf f v=  is 

given as: 

( )* *( )t t Tf E f v=  

where f is a function satisfying the regularity conditions of the Ito-Doeblin theorem. 

We must emphasise that for non-trivial functions f, the fair value ft is model-dependent and relies on dynamically 
trading the asset’s realised variance, which is why we do not distinguish it with an asterisk. 

An important application is the determination of the fair value of the volatility claim15 whose payoff is *
T Tv≡V  

(see Appendix B): 

(220) 
3

* 21exp
6t t

T tv T
T

ω
⎡ ⎤−⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
V  

For t = 0, we find: 

(221) * 2
0 0

1exp
6

v Tω⎡ ⎤= −⎢ ⎥⎣ ⎦
V  

In practice, 0V  is known as the fair strike of a volatility swap, *v0  is known as the fair strike of a variance swap, 
and the ratio between the two is known as the convexity adjustment16.  We refer to these concepts as fair volatility, 
fair variance and quadratic adjustment, respectively.  Readers should keep in mind that fair variance is the square 
root of implied variance. 

A first-order expansion of (221) yields the following rule of thumb for the quadratic adjustment: 
*
0 2

0

11
6

v
Tω− ≈

V
 

Interestingly, this quadratic adjustment is insubstantial if we use for ω the typical implied volatility levels of 15 to 30% 
observed on stock index option markets.  This should not be surprising since there is no reason to believe that 
volatility of volatility should be of same order as volatility.  In fact, if we believe that fair volatility and variance should 
substantially differ, (221) suggests that the volatility of volatility parameter should be significantly higher than 30%. 

(221) differs from Duanmu’s result17, who finds that the quadratic adjustment does not depend on maturity T.  This 
counters the intuition that the longer the maturity, the higher the quadratic effect, as our empirical results in 
Appendices D and E also suggest up to 6-month maturity. 

                                                      
15 On over-the-counter markets, volatility claims are known as volatility swaps. 
16 The idea behind the convexity adjustment is that variance is convex in volatility: by Jensen’s inequality, we must 

have *
0 0v ≥V . 

17 Specifically, Duanmu states that 2
0 0

1exp
4

v ξ⎛ ⎞′= −⎜ ⎟
⎝ ⎠

V , with ξ being the 1-year volatility of volatility. 
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2.3. Parameter estimation 

After Carr-Lee (2005) established a model-independent calculation of fair volatility under certain assumptions18, Friz-
Gatheral (2005) proposed to model terminal realised variance with a displaced log-normal distribution and calibrate 
the parameters to fair volatility and variance.  This approach is sensible so long as one believes volatility claims can 
indeed be efficiently synthesised within the Carr-Lee framework. 

In practice, however, volatility claims, known as volatility swaps on over-the-counter markets, continue to be illiquid 
instruments and their price is not observable.  In Appendix D, we propose to estimate the volatility of volatility 
parameter ω for various maturities using a break-even historical analysis of the quadratic adjustment.  Our empirical 
results for the Dow Jones EuroStoxx 50 index for the period 2000—2005 suggest that implied volatility of volatility 
should be of the order of 100% for short maturities, and of the order of 50% for longer maturities. 

2.4. Model limitations 

Notwithstanding the limitations typically attributed to the Black-Scholes model, the toy model cannot be 
straightforwardly extended to the entire variance curve.  This is because the dynamics of the variance price process 
are geometric rather than arithmetic, producing inconsistencies across the curve19. 

Another limitation of the toy model is that it disregards the dynamics of the asset price process, and any joint 
dynamics between the asset price and its realised variance.  It is unclear to us how these aspects would affect our 
results.

                                                      
18 Specifically, Carr-Lee state that, assuming no correlation between the asset price process and its realised 
volatility, fair volatility is close to the implied volatility of an at-the-money-forward call or put.  Carr-Lee also find a 
correlation-robust result involving Bessel functions. 

19 Recall that variance is additive: ( ) ( ) ( ) ( )2 2 21
1 2 1 2 1 1 2 2( ) | | | | | | ( ) | | ( )A A Aσ τ τ τ τ τ σ τ τ σ τ− ⎡ ⎤∪ = + +⎢ ⎥⎣ ⎦

, for any two 

disjoint time periods τ1 and τ2. 
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3. Rational pricing of equity correlation swaps 

In this Section we extend the toy model to two factors20 to represent (S, w, I), and derive an analytical formula for 
the fair value of a correlation claim with a payoff given as: 

2
( )ˆ ( )
( )

I

T Sc σ τρ τ
σ τ
⎛ ⎞

≡ = ⎜ ⎟
⎝ ⎠

 

Note this definition differs from the standard payoff of the correlation swap trading over-the-counter: 

∑
∑

<

<

ji ji

ji

SS
ji

ww

ww ji )(, τρ
 

where 
1, 1( ) ( ) ( ln )( ln )i j jiS S SS

i jd S d S
τ

ρ τ τ σ σ− −≡ ∫ . 

As shown in Exhibit 3.0.1 below, the historical difference between the above payoff and the correlation claim’s 
payoff was close to zero on average for the Dow Jones EuroStoxx 50 index, using 1-month rolling time periods 
between 2000 and 2007; in 80% of the cases, the difference was comprised between -4.6 and +6.7 correlation 
points.  This suggests that the fair value of a standard correlation swap should be close to that of the correlation 
claim, for short maturities. 

Exhibit 3.0.1 — Payoff differential between a 1-month standard correlation swap (average pair-wise) and a 1-
month correlation claim (proxy), for the Dow Jones EuroStoxx 50 index (2000—2007) 
In the chart below, we report on each monthly listed expiry date the difference between the ‘Average pair-wise’ and ‘Proxy’ realised correlation 
measures, which coincides with the payoff differential between a 1-month standard correlation swap and a 1-month correlation claim.  The 
calculation methodology is identical to Exhibit 1.2.1. 
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Source: Dresdner Kleinwort 
                                                      
20 Namely: index variance and constituent variance.  The two-factor toy model must not be confused with two-factor 
models for the correlation between two assets, such as proposed by Dupire (1992). 
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3.1. Two-factor toy model 

Given a fixed time period τ, denote *I
tv  the market price of realised index variance at time t, * iS

tv  the market price of 
the realised variance of stock Si at time t, and define the no-arbitrage price of realised constituent variance at time t 

as: **

1

i

N
SS

t i t
i

v w v
=

≡ ∑ . 

We specify the forward-neutral dynamics of Iv*  as follows: 
* * *2I I I
t I t t

T tdv v dz
T

ω −
=  

where ωI is a constant and z*I is a standard Brownian motion under P*. 

Similarly, we specify the dynamics of Sv *  directly: 

(310) * * *2S S S
t S t t

T tdv v dz
T

ω −
=  

where Sω  is a constant and z*S is a standard Brownian motion under P*.  It must be emphasized here that (310) is 

only an approximation of an N-factor approach with each iSv*  following this type of dynamics.  This is because an 
arithmetic average of log-normal variables is not necessarily log-normal. 

Assuming that the instantaneous correlation between z*I and z*S is constant (i.e. ( )( ) dtdzdz S
t

I
t χ=** ), we can 

rewrite (310) as: 

[ ]⊥−+
−

= *2*** 12 t
I

t
S

tS
S

t dzdzv
T

tTvd χχω  

where 
* *

*

21

S I
t t

t
z zz χ

χ
⊥ −
≡

−
 is a standard Brownian motion under P*, orthogonal to z*I by construction. 

3.2. Fair value of the correlation claim 

In this framework, the payoff of the correlation claim is a function of the two tradable assets I
tv* and S

tv * : 

S
T

I
T

T v
vc *

*

≡ . 

In Appendix C, we derive an analytical formula for the fair value of the correlation claim: 

(320) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=≡
3

2
*

*
*

3
4exp

T
tTT

v
v

cEc ISSS
t

I
t

Ttt ωωχω  

In other words, the fair value of the correlation claim is equal to the ratio of fair index variance to fair constituent 
variance, multiplied by an adjustment factor which depends on the volatility of index volatility, the volatility of 
constituent volatility, and the correlation between index and constituent volatilities. 

In particular, at t = 0, we have: 

(321) ( )
*

20

0

ˆ 4exp
3 S I S T

c
ρ χω ω ω⎛ ⎞= −⎜ ⎟

⎝ ⎠
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A first-order expansion gives the rule of thumb: 

( )
*

20

0

ˆ 41
3 S I S T

c
ρ χω ω ω− ≈ −  

Here, we must emphasise that χ corresponds to the correlation between changes in index and constituent 
volatilities, not the correlation between absolute levels.  Intuitively, the square of this parameter corresponds to the 
proportion of changes in index volatility explained by changes in constituent volatility (the rest being explained by 
changes in correlation.) 

3.3. Parameter estimation 

To estimate the volatility of constituent volatility parameter Sω , we follow the same approach as for index volatility.  
Our results are given in Appendix F.  

Estimating the correlation parameter χ is difficult because it requires to reconstitute the time series for v*I and v*S.  In 
Appendix F, we use a break-even historical analysis to estimate χ, and we find values in the range 80% to 98%. 

In Exhibit 3.3.1 below, we report our estimates for Iω  and Sω , and calculate the fair correlation adjustment 
obtained in (321) using five hypothetical values for χ between 0.6 and 1.  We can see that, for implied correlation to 
be higher than fair correlation, χ must be above 0.8.  When this is the case, the fair correlation adjustment is close to 
1 across all maturities. 

These empirical results suggest that the fair value of a correlation claim should be close to implied correlation.  Even 
if index and constituent volatilities were perfectly correlated, only extreme volatility of volatility parameter 
assumptions would result in a significant discrepancy between implied and fair correlations. 

Exhibit 3.3.1 — Fair correlation adjustment (ratio of implied correlation to fair correlation), using theoretical 
volatility of volatility parameters, for various values of the instantaneous correlation between index and 
constituent volatilities χ 

Maturity Index 
theoretical 
volatility of 
volatility      

Constituent 
theoretical 
volatility of 
volatility     

Fair 
correlation 
adjustment 

(χ = 0.6) 

Fair 
correlation 
adjustment 

(χ = 0.7) 

Fair 
correlation 
adjustment 

(χ = 0.8) 

Fair 
correlation 
adjustment 

(χ = 0.9) 

Fair 
correlation 
adjustment 

(χ = 1) 

1m 144.7% 123.4%  0.951   0.970   0.990   1.009   1.030  

2m 122.6% 101.2%  0.940   0.966   0.993   1.021   1.049  

3m 109.2% 88.9%  0.933   0.964   0.995   1.028   1.062  

6m 86.5% 69.9%  0.920   0.957   0.997   1.038   1.081  

12m 60.5% 54.1%  0.880   0.919   0.960   1.003   1.047  

24m 41.5% 38.6%  0.869   0.906   0.946   0.987   1.031  
Source: Dresdner Kleinwort 

Iω Sω
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3.4. Hedging strategy 

We now analyse the hedging strategy corresponding to the fair value of the correlation claim given in (320).  Our 
finding is that correlation swaps are replicated by dynamically trading vega-neutral variance dispersions. 

The hedge ratios, or deltas, for index variance and constituent variance are given as: 

S
t

t
S

t

tS
t

I
t

t
I

t

tI
t

v
c

v
c

v
c

v
c

**

**

−=
∂
∂

=Δ

=
∂
∂

=Δ

 

Hence, a long position in a correlation claim is hedged with a short position in index variance and a long position in 
constituent variance, i.e. a long variance dispersion trade.  The beta factor between the two legs of the dispersion 
trade is given as: 

S
t

I
t

I
t

S
t

t v
v

*

*

=
Δ
Δ

=β  

In particular, at time t = 0, we have *
00 ρ̂β = : the initial hedge is a vega-neutral dispersion trade.  It is easy to see 

that subsequent dynamic hedges aim to maintain vega-neutrality until maturity.  Note that the hedge has zero cost, 
and that βt generalises *ˆ tρ  to time periods starting in the past. 

3.5. Model limitations 

In addition to the limitations of the one-factor case, the two-factor toy model is not entirely arbitrage-free, as it allows 
for S

t
I

t vv ** > , i.e. *ˆ 1tρ > .  Our numerical results in Appendix G tend to indicate that, for χ > 80% and typical values 
for other model parameters, the probability of the terminal realised correlation cT being above 1 would be less than 
5%.  This is also confirmed in Exhibit 3.5.1 below where we used the theoretical volatility of volatility estimates found 
in Appendices D and E and a value of 50% for the initial implied correlation *

0ρ̂ . 

Here, we seem to have a trade-off between model simplicity and accuracy.  Because index and constituent 
variances are traded assets, we cannot introduce mean reversion or any other type of constraint on their drift under 
the forward-neutral measure P*.  One solution could be to make the correlation of volatilities parameter χ non-
constant, so as to further reduce the probability of an arbitrage.  Another, more ambitious solution might be to 
develop a large-factor model consistent with option and variance prices on the index and each constituent stock21. 

Another limitation of the toy model is that it assumes static weights and constituent stocks.  While this assumption 
seems reasonable for short time periods, it is likely to affect results for longer time periods. 

                                                      
21 A step in this direction can be found in Driessen et al. (2005), who derive endogenous dynamics for index 
variance based on the dynamics of constituent variances and an instantaneous correlation of stock returns process 
of the Wright-Fisher type.  However, the model of Driessen et al. is for variances and correlations of constant rolling 
maturity, which are non-tradable assets.  It is unclear to us whether their results can be extended to the fixed 
maturity case, with forward neutral drifts. 
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Exhibit 3.5.1 — Probability of cT > 1 in function of maturity T, for various values of the correlation between 
index and constituent volatilities parameter χ, and initial implied correlation *

0ˆ 0.5ρ =  
In the chart below, we report for each maturity the implied probability of the terminal realised correlation cT being above 1 assuming an initial 
implied correlation of 50%.  To construct each curve, we applied the analytical formula found in Appendix G with a given value for χ and the 
theoretical estimates found in Appendices D and E for ω’s. 
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4. Further research 

Despite its limitations, our approach is, to our knowledge, the first of its kind to establish that correlation swaps on 
the constituents of a stock index can be replicated by dynamically trading variance dispersions, and that their fair 
value is straightforwardly related to implied correlation.  In fact, using a parameter estimation methodology which 
relies on few historical factors, we obtain numerical results supporting the intuitive idea that the fair value of a 
correlation swap should be close to implied correlation.  Dynamic arbitrage opportunities may therefore exist 
whenever the market price of correlation swaps substantially differs from implied correlation. 

Further research is now needed: 

► On the fundamental side, the toy model needs to be refined to be made entirely arbitrage-free. 

► On the practical side, the toy model needs to be extended in order to calculate the fair value of other correlation 
measures, for instance the canonical or average pair-wise measures.  Additionally, allowing for free-float 
weights and changes in index composition would render the model closer to index calculation practices. 

► On the numerical side, more sophisticated parameter estimations, over longer historical periods and in other 
markets, would be extremely valuable. 

We believe our approach constitutes a first step towards a consistent pricing theory of statistical derivatives (i.e. 
derivatives on realised variance and correlation).  The toy model provides us with elementary analytical formulas 
and rules of thumbs.  We also see two other research areas which may benefit from our results: the pricing and 
hedging of exotic derivatives on multiple stocks (in particular the modelling inclusion of correlation skew), and the 
stochastic modelling of volatility and correlation. 
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6. Appendices 

A — Proxy formulas for realised and implied correlations 

In this appendix, we render the dependence on τ implicit and the dependence on N explicit in the notations 
introduced in Section 1.1.  Define the pair-wise correlation coefficient between stocks Si and Sj as: 

( ) ∫
−−≡

τ
σστρ )ln)(ln(

11,
ji

SjSSS SdSdiji  

Write: 

( ) ( )2 2,( ) ( )j i ji S S SSI
i j

i j
N w w Nσ σ σ ρ ε
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min 0Nσ >  and 

( )
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0NΡ > , we have: 
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If we further assume that (a) all realised volatilities never degenerate towards zero nor explode towards infinity, and 
(b) all pair-wise correlations never degenerate towards zero, we obtain the reduced convergence condition: 

( )
( )
max
( )
min

N

N

w o N
w

=  

Combined with inequality (A1), this condition ensures: 
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This condition is also sufficient to ensure the convergence of implied correlation: 
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Note that we can drop assumption (b) and obtain the relaxed convergence condition: 
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It is clear that this condition ensures the convergence of realised correlation.  We do not know if it is sufficient for 

implied correlation without making the additional market assumption that one can trade 
( )

min

NΡ . 
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B — Analytical formula for the volatility claim within the toy model 

Applying the Ito-Doeblin theorem, we can write the diffusion equation for ln v: 
2

* 2 *ln( ) 2 2t t
T t T td v dz

T T
ω ω− −⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 

Equivalently: 
2

* * 2 *
2exp 2 ( ) 2 ( )

T T

T t st t
v v T s ds T s dz

T T
ω ω⎛ ⎞

= − − + −⎜ ⎟
⎝ ⎠

∫ ∫  

Calculating the first integral explicitly: 

(B1) 
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∫  

Taking the square root and then the conditional expectation of both sides of (B1), we can write that the price of the 
volatility claim is given as: 

(B2) 
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Substituting this result in (B2) we obtain: 
3

* 21exp
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C — Analytical formula for ct within the 2-factor toy model 

Applying the Ito-Doeblin theorem on S

I

v
v

*

*

ln , we find: 
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Equivalently: 
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Taking conditional expectations under P* yields: 
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Expanding the squares and simplifying, we obtain: 
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D — Estimation of the volatility of index volatility parameter 

When historical prices for implied variance are available, as is the case with the major stock indexes such as the 
Dow Jones EuroStoxx50, several estimators can be constructed for the volatility of volatility parameter ω.  The 
problem here is that ω does not correspond to the volatility of realised volatility, nor the volatility of implied volatility; 
ω corresponds to the volatility of the variance price process *

tv  over its lifetime.  To get around this problem, we 
propose to estimate ω by isolating the quadratic effect of variance versus volatility. 

Inverting (221), we can write: 

Γ= ln6
T

ω  

where Γ is the ratio of fair variance to fair volatility, respectively denoted *
0v  and 0V  in (221).  Note that if time 

series of fair variance and volatility were available, we could back out an implied volatility of volatility parameter ω for 
each historical date and analyse its statistics.  However, in practice, volatility swaps are much less liquid instruments 
compared to variance swaps, precisely due to the absence of market consensus on their fair value.  Our 
methodology is to determine ω such that historical spread trades between variance and volatility break even on 
average. 

Given a sequence of M time periods Mmm ..1)( =τ , define: 
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where )( m
I

mR τσ≡  denotes realised index volatility over τm, and *
inf ( )

m

I
m mK τσ τ≡  denotes fair variance at the 

start of time period τm. 
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From an economic point of view, Γ̂  corresponds to the historical quadratic adjustment to be used so that an 
arbitrageur repeating normalised spread trades between variance and volatility would break even on average.  To 
see this clearly, assume that for each historical time period ordinal m, future realised volatility over τm trades at fair 

variance Km divided by a constant quadratic adjustment factor γ.  Buying 22
1

mK
units of variance and selling 

mK
1

units of volatility, and repeating the trade for all historical dates, the total profit or loss is: 
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Assuming p/l = 0 and solving for γ, we find Γ= ˆγ . 

We applied this methodology on a monthly basis, for 1-, 2-, 3-, 6-, 12- and 24-month listed expiries, using at-the-
money implied volatility levels as a proxy for fair variance.  Exhibit D1 below shows the results obtained on the Dow 
Jones EuroStoxx 50 for the period 2000—2005 (64 data points).  We can see that the break-even quadratic 
adjustment increases with the length of the time period up to 6 months and then remains stable, while the 
corresponding theoretical volatility of volatility decreases. 

We must emphasise that this analysis is fairly coarse due to the small number of data points, and the significant 
changes in market conditions within the historical period23.  As such, the figures obtained should not be seen as any 
form of recommended parameter values for trading purposes; they might, however, form the basis for sensible 
values in a risk management context. 

For completeness, we mention two other possible methodologies which require the reconstitution of the price 
process ( )

mtmtv ττ ∈)(*  for each time period τm: 

► Realised volatility of volatility: ( )∫∈≡
mt mtm vd
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► Break-even volatility of volatility: mω̂ is the solution to the break-even delta-hedging p/l equation: 
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23 Internet bubble in 2000, September 2001 terror attacks, bear stock markets in 2002, war in Iraq in 2003, stock 
markets recovery since 2004. 
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Exhibit D1 — Break-even quadratic adjustment and corresponding theoretical volatility of volatility for the 
Dow Jones EuroStoxx 50 index (2000—2005) 
In the chart below, we report for each maturity the values of Γ̂  and ω̂  observed on the Dow Jones EuroStoxx 50 index between 2000 and 
2005, corresponding to 64 periods starting on a monthly listed expiry date.  The calculation methodology of realised and implied volatilities is 
identical to Exhibit 1.2.1. 
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Source: Dresdner Kleinwort 

E — Estimation of the volatility of constituent volatility parameter 

We apply the same methodology as in Appendix D to estimate the volatility of constituent volatility parameter Sω .  
For an index such as the Dow Jones EuroStoxx 50, the difficulty here is to obtain reliable implied volatility surfaces 
for each of the 50 constituents.  The amount of data mining involved in such an operation can be considerable; we 
limited ourselves to estimating historical at-the-money implied volatility levels on a monthly basis for 1-, 2-, 3-, 6-, 12- 
and 24-month listed expiries. 

Exhibit E1 below shows the results we obtained for the period 2000—2005, based on 64 monthly data points.  We 
can see that the break-even quadratic adjustment increases with the maturity, while the corresponding theoretical 
volatility of constituent volatility decreases.  Compared with Exhibit D1, both figures are systematically lower than for 
the index.  This should not be surprising: in any framework where constituent volatility and correlation have positive 

covariance, we have: ( ) ( )1 ˆln ln ln ln
2

I S SVar Var Varσ σ ρ σ⎛ ⎞= + ≥⎜ ⎟
⎝ ⎠

. 
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Exhibit E1 — Break-even quadratic adjustment and volatility of volatility of the constituents of the Dow 
Jones EuroStoxx 50 index for the period 2000—2005 
In the chart below, we report for each maturity the values of Γ̂  and ω̂  observed on the constituent stocks of the Dow Jones EuroStoxx 50 index 
between 2000 and 2005, corresponding to 64 periods starting on a monthly listed expiry date.  The calculation methodology of realised and 
implied volatilities is identical to Exhibit 1.2.1. 
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F — Estimation of the correlation parameter between index and constituent volatilities 

Inverting (321), we have: 

SI
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ωω

ω
χ

Λ+
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ln
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32

 

where Λ denotes the ratio of implied correlation to fair correlation, respectively denoted *
0ρ̂  and c0 in (321).  

Similarly to the situation described in Appendix D, if time series of fair correlation and implied correlation were 
available, we could back out an implied correlation of volatilities parameter χ for each historical date and analyse its 
statistics.  In practice, correlation swaps are illiquid instruments and interbank quotes are infrequent. 

Our methodology is to estimate χ using a break-even analysis of the fair to implied correlation adjustment.  Given a 
sequence of M time periods Mmm ..1)( =τ , define: 
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where )( m
S

mR τσ≡  is the realised constituent volatility over τm, )(*
inf m

S
m m

K τσ τ≡  is the corresponding implied 

volatility at the start of time period τm, )(ˆ mmRC τρ≡  is the realised correlation over τm, and )(ˆ *
inf mm m

IC τρ τ≡ is 
the corresponding implied volatility at the start of time period τm. 
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From an economic point of view, Λ̂  corresponds to the historical adjustment to be used so that an arbitrageur 
repeating normalised spread trades between variance dispersion and correlation swaps would break even on 
average.  To see this clearly, assume that for each historical time period ordinal m, future realised correlation over τm 

trades at implied correlation ICm divided by a constant adjustment factor λ.  Selling 2

1

mK
 units of a vega-neutral 

dispersion24 and selling 1 unit of correlation, and repeating the trade for all historical dates, the total profit or loss is: 
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Assuming p/l = 0 and solving for λ, we find Λ= ˆλ . 

We applied this methodology on a monthly basis, for 1-, 2-, 3-, 6-, 12- and 24-month listed expiries, using at-the-
money implied volatilities to calculate implied correlation.  Exhibit F1 below show the results obtained on the Dow 
Jones EuroStoxx 50 for the period 2000—2005 (64 data points).  We can see that the break-even adjustment factor 
Λ̂  takes values between 0.991 and 1.041 while the corresponding theoretical correlation parameter χ increases 
from 80.7% to 98.0%.  We can also notice that, contrary to results in Appendices D and E for the break-even 
quadratic factor, the term structure of the break-even adjustment factor Λ̂  is non-increasing. 

Exhibit F1 — Break-even adjustment factor and theoretical correlation between index and constituent 
volatilities, for Dow Jones EuroStoxx 50 (2000—2005) 
In table (a) below, we report for each maturity the values of Λ̂ , ω’s and χ observed on the Dow Jones EuroStoxx 50 index and its constituents 

between 2000 and 2005, corresponding to 64 periods starting on a monthly listed expiry date.  Chart (b) plots the term structure of Λ̂ , and χ 
only. 

(a) 

Maturity 
Break-even 

adjustment factor 
Index theoretical 

volatility of 
volatility     

Constituent 
theoretical 
volatility of 
volatility      

Theoretical 
correlation of 
volatilities χ 

1m  0.991  144.7% 123.4% 80.7% 

2m  1.013  122.6% 101.2% 87.2% 

3m  1.027  109.2% 88.9% 89.8% 

6m  1.041  86.5% 69.9% 90.8% 

12m  1.018  60.5% 54.1% 93.5% 

24m  1.022  41.5% 38.6% 98.0% 
 

                                                      
24 Recall that a short variance dispersion position is long correlation. 

Λ̂ Iω
Sω
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 (b) 
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G — Probability of cT > 1 within the two-factor toy model 

From the particularisation of (C1) at t = 0, we can write: 
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The two stochastic integrals in the above expression being independent normals with zero mean and variance T
3
4

, 

we obtain after simplifying terms: 
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where N(.) denotes the cumulative distribution of a standard normal. 

We calculated this value for 1-month and 12-month maturities, using the theoretical volatility of volatility parameters 
found in Appendices D and E, for χ between -1 and 1 and *

0ρ̂  between 50% and 100%.  Results are shown in 

Exhibit G1.  We can see that the probability increases with *
0ρ̂  and decreases with χ. 
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Exhibit G1 — Probability of cT > 1 for T = 1/12, in function of the instantaneous correlation between index 
and constituent volatilities χ, for various values of the initial implied correlation *

0ρ̂ . 
In the charts below, we report the value of P*({cT > 1}) for (a) 1-month and (b) 12-month maturity, in function of χ , using the values of ω’s found in 

Appendices D and E.  Each curve corresponds to a given value of 
*
0ρ̂ . 
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Source: Dresdner Kleinwort 


